|
D-CAD Technologies Development Centre forApplied Dynamics |
Machine Foundation Design Competency Centre for Frame and Block Foundation Rotary, Reciprocating, Impact Machines and Vibration Isolation |
About the Design Aids
Table of Contents
Foreword
Preface
Acknowledgement
CONTENTS
About the Handbook xi
Contents xiii
Acknowledgement xix
Foreword xxi
Preface xxiii
1 Crushing Mills and Their Foundations - An Overview
1.1 Industrial Crushing Mills 1-3
1.2 Crushing Mill Foundations 1-3
1.2.1 Foundation Support System 1.4
1.2.2 Foundation Design 1-5
1.3 Dynamics Forces 1-5
1.4 Field Performance and Feedback 1-6
2 Dynamics of Mill Foundations
2.1 Crushing Mills and their Foundations 2-3
2.2 Theory of Vibrations - Dynamic Analysis 2-5
2.2.1 Vibration of a Spring Mass System 2-5
2.2.2 Vibration of a Spring Mass System with Translational Spring 2-5
2.2.2.1 Un-damped Spring Mass System 2-5
2.2.2.2 Damped Spring Mass System 2-9
Example Problems - Basic Theory of Vibrations 2-14
P 2.2-1 Undamped Spring Mass System - Translational Spring 2-14
P 2.2-2 Damped Spring Mass System - Vertical Translational Spring 2-15
2.3 Dynamic Considerations for Design of Mill Foundations 2-17
2.3.1 Mass & Stiffness Parameters of Mill-Foundation System 2-17
2.4 Dynamic Analysis 2-18
2.4.1 Dynamic Analysis of Mill Pedestals 2-18
Example Problems - Mill Pedestal Vibrations 2-21
P 2.4-1 Pedestal Supporting Machine 2-21
P 2.4-2 Free Standing Pedestals 2-22
2.5 Dynamic Analysis of Mill Foundations 2-23
2.5.1 Dynamic Response Analysis of Mill Foundation 2-26
2.5.1.1 Free & Forced Vibration 2-26
2.5.1.1.1 Motion along Y (Vertical direction) 2-27
2.5.1.1.2 Motion about Y (Torsional Vibration) 2-29
2.5.1.1.3 Motion in X-Y Plane (Translation along X and Rocking about Z) 2-31
2.5.1.1.4 Motion in Y-Z Plane: (Translation along Z and Rocking about X) 2-35
Example Problems - Mill Foundation Vibrations 2-40
P 2.5-1 An Undamped Spring Mass System Supported by a Vertical Spring
subjected to Vertical Dynamic Force 2-40
P 2.5-2 An Undamped Spring Mass System supported by Torsional Spring
subjected to Torsional Dynamic Moment 2-41
P 2.5-3 Mill Foundation supported on Soil - Free Vibration -
Foundation Natural frequencies 2-42
P 2.5-4 Mill Foundation supported on Soil - Forced Vibration -
Foundation Response 2-45
3 Design Parameters
3.1 Mill (Machine) Parameters 3-3
3.1.1 Machine Static Loads 3-4
3.1.2 Machine Dynamic Loads (DL) for Dynamic Response 3-5
3.1.3 Machine Operational Loads for Strength Design 3-6
3.1.4 Vibration Limits for Crushing Mills 3-7
3.1.5 Machine Data Template (TP-M) for Machine Parameters 3-8
3.2 Foundation Parameters 3-10
3.2.1 Foundation Material 3-10
3.2.2 Reinforced Cement Concrete (RCC) 3-10
3.2.3 Reinforcement 3-12
3.2.4 Foundation Sizing 3-12
3.2.5 Foundation Rigidity 3-14
3.2.6 Foundation Mass Ratio 3-14
3.2.7 Foundation Eccentricity 3-14
3.2.8 Foundation Tuning 3-15
3.2.9 Vibration Limits for Mill Foundation 3-16
3.2.10 Foundation Strength Design 3-17
3.2.11 Minimum Reinforcement 3-17
3.2.12 Foundation Data Template (TP-F) for Foundation Parameters 3-18
3.3 Geo-Technical Parameters 3-18
3.3.1 Foundations Supported over the Soil 3-18
3.3.1.1 Design Soil Parameters 3-19
3.3.1.1.1 Correlations between Various Dynamic Soil Parameters 3-19
3.3.1.1.2 Corrections for Static Stress or Overburden Pressure 3-20
3.3.1.2 Soil Damping 3-21
3.3.1.3 Soil Stiffness - Equivalent Soil Springs 3-22
3.3.1.3.1 Equivalent Soil Springs using Coefficients of Sub-grade
Reactions 3-22
3.3.1.3.2 Equivalent Soil Springs using Elastic Half Space Model 3-30
3.3.2 Foundation Supported over Piles 3-34
3.3.2.1 Design Pile Parameters 3-35
3.3.2.2 Pile Stiffness 3-35
3.3.2.3 Group Effect on Pile Stiffness 3-37
3.3.2.4 Pile Damping 3-38
3.3.2.5 Equivalent Pile Stiffness 3-38
3.3.3 Data Template (TP-G) for Geo -Technical Parameters 3-43
Example Problems Equivalent Soil Springs / Pile Stiffness 3-44
P 3.3-1 Vertical Vibration Resonance Test - Equivalent Soil Springs 3-44
P 3.3-2 Cyclic Plate Load Test - Equivalent Soil Springs 3-46
P 3.3-3 Foundation on Piles - Equivalent Pile Stiffness 3-48
4 Modeling and Analysis
4.1 Modeling 4-4
4.1.1 Machine 4-4
4.1.2 Foundation (Base Raft + Pedestals) 4-4
4.1.3 Equivalent Soil/Pile Springs 4-5
4.1.4 Boundary Conditions 4-6
4.1.5 Material Data 4-6
4.1.6 Degree of Freedom Incompatibility 4-6
4.1.7 Vibration Isolation 4-7
4.2 Dynamic Analysis 4-7
4.2.1 Free Vibration Analysis 4-7
4.2.2 Forced Vibration Response 4-9
4.2.2.1 Steady-State Response at Machine Operating Speeds 4-9
4.2.2.2 Response at Gear-Mesh Frequency 4-10
4.2.2.3 Transient Response 4-10
4.3 Strength Analysis & Design 4-11
4.3.1 Load Cases and Load Combinations
5 Design of Crushing Mill Foundations
5.1 Design Methodic for Crushing Mill Foundations 5-3
5.1.1 Design Step 1 - System Data 5-3
5.1.2 Design Step 2 - FE Modeling 5-4
5.1.3 Design Step 3 - Soil/ Pile Springs for FE/SD Modeling 5-4
5.1.3.1 Foundation directly supported over soil - Equivalent Springs 5-4
5.1.3.2 Foundation supported over Piles - Equivalent Pile Springs 5-4
5.1.4 Design Step 4: Foundation Sizing & Eccentricity 5-4
5.1.4.1 Foundation Sizing 5-4
5.1.4.2 Foundation Eccentricity 5-5
5.1.5 Design Step 5 - Free Vibration Analysis 5-5
5.1.5.1 Pedestal Natural Frequencies 5-5
5.1.5.2 Foundation Natural Frequencies 5-5
5.1.6 Design Step 6 - Forced Vibration Analysis 5-6
5.1.6.1 Steady-State Response at Machine Operating Speeds 5-6
5.1.6.2 Response at Gear-Mesh Frequency 5-7
5.1.6.3 Transient Response 5-7
5.1.7 Design Step 7 - Strength Design 5-7
5.2 Design of a Typical Mill Foundation (Sample Problem) 5-8
P 5.2.1 Example Problem: A Typical Foundation comprising
of a Base Raft and a few Pedestals supporting dynamic machines
directly Supported over the Soil. 5-8
5.3 Design of Foundation 5-10
5.3.1 Design using Finite Element Method (FEM) 5-10
5.3.1.1 Design Step 1 - System Data 5-10
5.3.1.2 Design Step 2 - FE Modeling 5-12
5.3.1.3 Design Step 3 - Soil Springs for FE Modeling 5-12
5.3.1.4 Design Step 4 - Foundation Sizing & Eccentricity 5-12
5.3.1.5 Design Step 5 - Free Vibration Analysis 5-13
5.3.1.6 Design Step 6 - Forced Vibration Analysis 5-16
5.3.1.7 Summary of FEM Analysis - Natural Frequencies &
Steady-State Response 5-19
5.3.2 Design using Structural Design Method (SDM) 5-20
5.3.2.1 Design Step 1 System Data 5-20
5.3.2.2 Design Step 2 Modeling 5-20
5.3.2.3 Design Step 3 Foundation Sizing & Eccentricity 5-20
5.3.2.4 Design Step 4 - Soil Springs for FE Modeling 5-20
5.3.2.5 Design Step 5 - Free Vibration Analysis 5-20
5.3.2.6 Design Step 6 - Forced Vibration Analysis 5-21
5.3.2.7 Summary of SDM - Natural Frequencies & Steady-State
Response 5-22
5.3.3 Comparative Results of FEM & SDM results 5-23
5.3.4 Learnings from the Study 5-25
6 Foundation for a Real-Life Crushing Mill Supported Directly
over the Soil
6.1 Foundation for a Real-Life Crushing Mill 6-3
6.1.1 Mill Machine Data 6-3
6.1.2 Foundation Data 6-6
6.1.3 Geotechnical Data 6-7
6.2 Foundation Design 6-7
6.2.1 Design Step 1 - System Data 6-7
6.2.2 Design Step 2 - FE Modeling 6-9
6.2.3 Design Step 3 - Soil Springs for FE Modeling 6-9
6.2.4 Design Step 4 - Foundation Sizing & Eccentricity 6-10
6.2.5 Design Step 5 - Free Vibration Analysis 6-15
6.2.5.1 Pedestal Natural Frequencies 6-15
6.2.5.2 Foundation Natural Frequencies 6-17
6.2.6 Design Step 6 - Forced Vibration Analysis 6-19
6.2.6.1 Permissible Vibration Amplitude/ Velocity 6-19
6.2.6.2 Steady State Response at Machine Operating Frequencies 6-20
6.2.6.3 Response at Gear-Mesh Frequency 6-24
6.2.7 Design Step 7 - Strength Design 6-25
7 Foundation for a Real-Life Crushing Mill on Piles
7.1 Foundation Design of a Real-Life Crushing Mill 7-3
7.1.1 Mill Machine Data 7-3
7.1.2 Foundation Data 7-6
7.1.3 Geotechnical Data (Pile Parameters from Geo-Technical Report) 7-7
7.2 Foundation Design 7-7
7.2.1 Design Step 1 - System Data 7-7
7.2.2 Design Step 2 - FE Modeling 7-8
7.2.3 Design Step 3 - Pile Springs for FE Modeling 7-9
7.2.4 Design Step 4 - Foundation Sizing & Eccentricity 7-10
7.2.5 Design Step 5 - Free Vibration Analysis 7-12
7.2.5.1 Pedestal Natural Frequencies 7-12
7.2.5.2 Foundation Natural Frequencies 7-13
7.2.6 Design Step 6 - Forced Vibration Analysis 7-16
7.2.6.1 Permissible Vibration Amplitude/ Velocity 7-17
7.2.6.2 Steady State Response at Machine Operating Frequency 7-17
7.2.6.3 Response at Gear-Mesh Frequency 7-20
7.2.7 Design Step 7 - Strength Design 7-21
8 Construction Aspects
8.1 Construction Joints 8-5
8.2 Embedded Parts 8-5
8.3 Placing / Laying of Concrete 8-6
8.3.1 Quality plan 8-6
8.3.2 Cold Joints 8-6
8.3.3 Segregation 8-6
8.3.4 Mass Concreting 8-6
8.4 Grouting 8-7
8.5 Anchor Bolts 8-7
[Top]